CAFE
Introduction
Title: Cross-modal Ambiguity Learning for Multimodal Fake News Detection
Authors: Yixuan Chen, Dongsheng Li, Peng Zhang, Jie Sui, Qin Lv, Lu Tun, Li Shang
Abstract: Cross-modal learning is essential to enable accurate fake news detection due to the fast-growing multimodal contents in online social communities. A fundamental challenge of multimodal fake news detection lies in the inherent ambiguity across different content modalities, i.e., decisions made from unimodalities may disagree with each other, which may lead to inferior multimodal fake news detection. To address this issue, we formulate the cross-modal ambiguity learning problem from an information-theoretic perspective and propose CAFE — an ambiguity-aware multimodal fake news detection method. CAFE consists of 1) a cross-modal alignment module to transform the heterogeneous unimodality features into a shared semantic space, 2) a cross-modal ambiguity learning module to estimate the ambiguity between different modalities, and 3) a cross-modal fusion module to capture the cross-modal correlations. CAFE improves fake news detection accuracy by judiciously and adaptively aggregating unimodal features and cross-modal correlations, i.e., relying on unimodal features when cross-modal ambiguity is weak and referring to cross-modal correlations when cross-modal ambiguity is strong. Experimental studies on two widely used datasets (Twitter and Weibo) demonstrate that CAFE outperforms state-of-the-art fake news detection methods by 2.2-18.9% and 1.7-11.4% on accuracy, respectively.

For source code, please refer to CAFE
If you want to change parameters, dataset or evaluation settings, take a look at